Gas Flowmeter Sizing

Variable area flowmeters suitable for liquid service have a capacity rating based on water at 70° Fahrenheit. Flowmeters suitable for gas service have a capacity rating based on air at STP (70°F, 14.7 PSIA) conditions. The correction factors listed below are used to calculate the flow capacity when using a liquid other than water or a gas other than air at STP conditions.

GAS CORRECTION FORMULA

Air Equivalent Flow Rate = Customer Gas Flow Rate X Gas Correction Factor

- Step 1: Convert Customer Gas Flow Rate unit of measure to a standard unit of measure for air flow (SCFM or SCCM).
- Step 2: Calculate Gas Correction Factor from given values.
- Step 3: Calculate the product of the Air Equivalent Flow Rate from the Customer Gas Flow Rate and the Gas Correction Factor.
- Step 4: Calculate the maximum or minimum flow rate for the customer's conditions.

Step 1: Convert Customer Gas Flow Rate unit of measure to a standardunit of measure for air flow

Customer Gas Flow Rate _____ SCFM / SCCM

	Gas Flow Rate Conversions					
From	To SCFM	From	To SCCM			
SCFH	Divide by 60	SCFM	Multiply by 28,317			
SCIM	Divide by 1,728	SCFH	Multiply by 472			
SLPM	Divide by 28.317	SCIM	Multiply by 16.39			
SM ³ /MIN	Multiply by 35.31	SLPM	Multiply by 1,000			
SM ³ /HR	Multiply by 0.5885	SLPH	Multiply by 16.67			
NM ³ /MIN	Multiply by 37.99	SM ³ /MIN	Multiply by 1,000,000			
NM ³ /HR	Multiply by 0.6331	SM³/HR	Multiply by 16,667			
SCCM	Divide by 28,317	NM ³ /MIN	Multiply by 1,075,785			
KG/MIN	Multiply by (29.39 ÷ SpGr)	NM ³ /HR	Multiply by 17,929			
KG/HR	Multiply by (0.49 ÷ SpGr)	KG/MIN	Multiply by (832,000 ÷ SpGr)			
LBS/MIN	Multiply by (13.33 ÷ SpGr)	KG/HR	Multiply by (13,876 ÷ SpGr)			
LBS/HR	Multiply by(0.2222 ÷ SpGr)	LBS/MIN	Multiply by (377,500 ÷ SpGr)			
LBS/DAY	Multiply by (0.00926 ÷ SpGr)	LBS/HR	Multiply by (6,292 ÷ SpGr)			
ACFM	Multiply by [[(Operating PSIG+14.7)(530)] ÷ [(14.7)(Operating °F+460)]]					

Step 2: Calculate Gas Correction Factor from given values

This information is required to size for conditions other than air at STP:

- Operating Temperature: _____°F
- Operating Back Pressure: _____ PSIG
- Specific Gravity of Gas: @STP

Tempe	erature Conversions	Gas Density Conversions	
From	To °Fahrenheit	From	To Specific Gravity
°Centigrade	(°C X 1.8) + 32	LBS/FT ³	Divide by 0.075
°Kelvin	(°K – 273.15) 1.8 + 32	KG/M ³	Divide by 1.2
°Rankine	°R – 459.67	MolWt	Divide by 29.0
		g/cm³	Divide by 0.0012

Pressure Conversions						
From	To PSIG	From	To PSIG			
foot Water	Divide by 2.308	Pa	(Pa÷101,300) X 14.7			
Inch Water	Divide by 27.73	PSIA	Minus 14.7			
mm Water	Divide by 704	ATM	(ATM X 14.7) – 14.7			
inch Hg	Divide by 2.036	Torr	((Torr÷760) X14.7) – 14.7			
mm Hg	Divide by 51.7	Bars	((Bars÷1.013) X14.7) – 14.7			
kg/cm ²	Multiply by 14.228	Millibar	((Millibars÷1013) X 14.7) -14.7			
kPa	(kPa÷101.3) X 14.7					

Gas Correction Factor (GCF) formula:

Step 3: Determine the Air Equivalent Flow Rate.

Air Equivalent Flow Rate = Customer Gas Flow Rate x Gas Correction Factor Air Equivalent Flow Rate =

Step 4: Calculate the maximum or minimum flow rate for the customer's conditions (Customer Gas Flow Rate Scale)

Customer Gas Flow Rate Scale = Catalog Flow Rate ÷ Gas Correction Factor Customer Gas Flow Rate Scale = _____